Processamento e Análise de Imagens Médicas

Autores

  • Ana Maria Marques da Silva Núcleo de Pesquisa em Imagens Médicas PUCRS, Porto Alegre, RS http://orcid.org/0000-0002-5924-6852
  • Ana Cláudia Patrocínio Universidade Federal de Uberlândia, Centro de Ciências Exatas e Tecnologia, Faculdade de Engenharia Elétrica. Av. João de Ávila, 2121 Bloco 3N Santa Monica 38408100 - Uberlândia, MG http://orcid.org/0000-0001-9376-7689
  • Homero Schiabel Escola de Engenharia de São Carlos USP http://orcid.org/0000-0002-7014-948X

DOI:

https://doi.org/10.29384/rbfm.2019.v13.n1.p34-48

Palavras-chave:

imagens médicas, processamento de imagens, segmentação, auxílio computadorizado ao diagnóstico.

Resumo

Este artigo tem por objetivo apresentar uma abordagem conceitual sobre os principais aspectos envolvidos no processamento e na análise digital de imagens médicas, trazendo exemplos da aplicação na prática clínica e da pesquisa em imagens médicas. Para explorar a temática, o artigo está dividido em seções. A primeira seção apresenta os aspectos relacionados às diferenças entre a imagem adquirida no equipamento e a visualizada nos monitores, levantando alguns elementos relacionados à qualidade da aquisição. A seguir são descritas algumas técnicas de pré-processamento que permitem melhorar e destacar aspectos relevantes das imagens. A próxima seção apresenta os principais métodos de segmentação de objetos de interesse nas imagens. A seguir, duas seções descrevem como representar e descrever de forma quantitativa as características relevantes das imagens, para que elas possam ser analisadas computacionalmente, e os aspectos relativos à análise e ao reconhecimento de padrões em imagens. Finalmente, são apresentados alguns exemplos de esquemas de auxílio computadorizado ao diagnóstico.

Downloads

Referências

Evans AL. The evaluation of medical images. Bristol: Hilger; 1981.

Pisano ED, Yaffe MJ, Kuzmiak CM, eds. Digital mammography. Filadélfia: Lippincott Williams & Wilkins; 2004.

Borg M, Badr I, Royle G. Should processed or raw image data be used in mammographic image quality analyses? A comparative study of three full-field digital mammography systems. Radiat Prot Dosimetry. 2014;163(1):102-11. https://doi.org/10.1093/rpd/ncu046

Sinha GR, Neha A. Fuzzy based Image Enhancement Method. IJCA; 2015.

Yaffe MJ. Digital Mammography. In: Beutel J, Kundel HL, Van Metter RL (eds.). Handbook of Medical Imaging. Physics and Psychophysics. Bellingham: SPIE Press; 2000. v. 1. p. 329-372.

Dalmazo J, Elias Júnior J, Brocchi MAC, Costa PR, Azevedo-Marques PM. Otimização da dose em exames de rotina em tomografia computadorizada: estudo de viabilidade em um hospital universitário. Radiol Bras. 2010;43(4):241-8. http://dx.doi.org/10.1590/S0100-39842010000400008

Borges LR, Guerrero I, Bakic PR, Maidment ADA, Schiabel H, Vieira MAC. Simulation of dose reduction in digital breast tomosynthesis. In: 13th International Workshop on Breast Imaging; 2016; Malmö. Anais. 2016. p. 343-50. http://doi.org/10.1007/978-3-319-41546-8_43

Saunders Jr. RS, Baker JA, Delong DM, Johnson JP, Samei E. Does image quality matter? Impact of resolution and noise on mammographic task performance. Med Phys. 2007;34(10):3971-81. https://doi. org/10.1118/1.2776253

Knoll GF. Radiation detection and measurement. Nova York: John Wiley & Sons; 2010.

Leon-Garcia A. Probability, statistics, and random processes for electrical engineering. Upper Saddle River: Pearson; 2017.

Akila K, Jayashree LS, Vasuki A. Mammographic image enhancement using indirect contrast enhancement techniques–a comparative study. Proc Comp Scien. 2015;47:255-61. https://doi.org/10.1016/j.procs.2015.03.205

Wickerhauser V, Coifman RR, Meyer Y. Wavelet analysis and signal processing. In: Ruskai MB, Beylkin G, Coifman R, Daubechies I, Mallat S, Meyer Y, and Raphael L, editors. Wavelets and Their Applications. Boston: Jones and Bartlett; 1992.

Antonini M, Barlaud M, Mathieu P, Daubechies I. Image coding using wavelet transform. IEEE Trans Image Proc. 1992;1(2):205-20. https://doi. org/10.1109/83.136597

ChangRF,WuWJ,MoonWK,ChenDR.Automaticultrasoundsegmentation and morphology based diagnosis of solid breast tumors. Breast Cancer Res Treat. 2005;89(2):179-85. https://doi.org/10.1007/s10549-004-2043-z

Laine AF, Fan J, Schuler S. A framework for contrast enhancement by dyadic wavelet analysis. Nova York: Elsevier; 1994.

Heinlein P, Drexl J, Schneider W. Integrated wavelets for enhancement of microcalcifications in digital mammography. IEEE Trans Med Imag. 2003;22(3):402-13. https://doi.org/10.1109/TMI.2003.809632

Scharcanski J, Jung CR. Denoising and enhancing digital mammographic images for visual screening. Computerized Med Imag Graphics. 2006;30(4):243-54.https://doi.org/10.1016/j.compmedimag.2006.05.002

Pisano ED, Gatsonis C, Hendrick E, Yaffe M, Baum JK, Acharyya S, et al. Diagnostic Performance of Digital Versus Film Mammography For Breast- Cancer Screening. N Engl J Med. 2005;353(17):1773-83. https://doi. org/10.1056/NEJMoa052911

Pizer SM, Amburn EP, Austin JD, Cromartie R, Geselowitz A, Greer T, et al. Adaptive histogram equalization and its variations. Comput Gr Image Process. 1987;39(3):355-68. https://doi.org/10.1016/S0734- 189X(87)80186-X

Lu L, Zhou Y, Panetta K, Agaian S. Comparative study of histogram equalization algorithms for image enhancement. Mobile Multimedia/Image Processing, Security, and Applications. Baltimore: SPIE; 2010.

Sharma N, Aggarwal LM. Automated medical image segmentation techniques. J Med Phys. 2010;35(1):3-14. https://doi.org/10.4103/0971- 6203.58777

Canny J. A Computational Approach to Edge Detection. IEEE Trans Pattern Anal Mach Intell. 1986;8(6):679-98.

Rathnayaka K, Sahama T, Schuetz MA, Schmutz B. Effects of CT image segmentation methods on the accuracy of long bone 3D reconstructions. Med Eng Phys. 2011;33(2):226-33. https://doi.org/10.1016/j. medengphy.2010.10.002

Sonali P, Udipi VR. Preprocessing To Be Considered For MR and CT Images Containing Tumors. Retrieved. J Electrical Electron Eng Res [Internet]. 2012 [acessado em 10 ago. 2019;1(4):54-7. Disponível em: http://iosrjournals. org/iosr-jeee/Papers/vol1-issue4/G0145457.pdf?id=2706

Moy JP, Bosset B. How does real offset and gain correction affect the DQE in images from x-ray flat detectors? Med Imag. 1999;3659. https://doi. org/10.1117/12.349555

Mathias P, Neitzel U, Schaefer-Prokop C. Principles of image processing in digital chest radiography. J Thorac Imaging. 2003;18(3):148-64.

Pisano ED, Cole EB, Hemminger BM, Yaffe MJ, Aylward SR, Maidment AD, et al. Image processing algorithms for digital mammography: a pictorial essay. Radiographics. 2000;20(5):1479-91. https://doi.org/10.1148/ radiographics.20.5.g00se311479

Rangayyan RM. Biomedical image analysis. Biomedical engineering series. Londres: CRC Press; 2005.

Gonzalez RC, Woods RE. Processamento digital de imagens. 3a ed. São Paulo: Pearson Prentice Hall; 2010.

Pratt WK. Digital image processing. 4a ed. Hoboken: Wiley-Interscience; 2007.

Li BN, Chui CK, Chang S, Ong SH. A new unified level set method for semi- automatic liver tumor segmentation on contrast-enhanced CT images. Expert Systems Appl. 2012;39(10):9661-8. https://doi.org/10.1016/j. eswa.2012.02.095

Zidan A, Ghali NI, Hassanien AE, Hefny H, Hemanth J. Level set-based CT liver computer aided diagnosis system. Int J Imaging Robotics. 2012;9(1):26-36.

Cagnoni S, Dobrzeniecki AB, Poli R, Yanch JC. Genetic algorithm-based interactive segmentation of 3D medical images. Image Vision Comput. 1999;17(12):881-95. https://doi.org/10.1016/S0262-8856(98)00166-8

Ghosh P, Mitchell M. Segmentation of medical images using a genetic algorithm. In: Proceedings of the 8th annual conference on Genetic and evolutionary computation GECCO; 2006. p. 1171. https://doi. org/10.1145/1143997.1144183

Zhuo Z, Zhai W, Li X, Liu L, Tang J. Local adaptive segmentation algorithm for 3-D medical image based on robust feature statistics. Sci China Inf Sci. 2014;57(10):1-12. https://doi.org/10.1007/s11432-014-5095-7

Anastácio R, Thomaz RL, Macedo TAA, Patrocinio AC. Comparação entre técnicas para segmentação automática de fígado utilizando crescimento de região. Rev Bras Inovação Tecnológica em Saúde. 2015;5(4):1-12. https://doi.org/10.18816/r-bits.v5i4.7061

Kumar SS, Moni RS, Rajeesh J. Automatic Segmentation of Liver and Tumor for CAD of Liver. J Adv Inform Technol. 2011;2(1):63-70. https://doi. org/10.4304/jait.2.1.63-70

Oliveira DA, Feitosa RQ, Correia MM. Segmentation of liver, its vessels and lesions from CT images for surgical planning. BioMed Eng OnLine. 2011;10(1):30. https://doi.org/10.1186/1475-925X-10-30

Lim SJ, Jeong YY, Ho YS. Automatic liver segmentation for volume measurement in CT Images. J Vis Commun Image Rep. 2006;17(4):860-75. http://dx.doi.org/10.1016/j.jvcir.2005.07.001

Heimann T, Meinzer HP. Statistical shape models for 3D medical image segmentation: a review. Med Image Anal. 2009;13(4):543-63. https://doi. org/10.1016/j.media.2009.05.004

Rueda L, Mery D, Kittler J. Progress in Pattern Recognition Image Analysis and Applications. Berlim: Springer; 2007.

Roerdink JBTM, Meijster A. The Watershed Transform: Definitions, algorithms and Parallelization Strategies. Fundamenta Informaticae. 2001;41(1-2):187-228.

Haralick RM, Shanmugam K, Dinstein IH. Textural features for image classification. Systems, Man and Cybernetics. 1973;(6):610-21. https:// doi.org/10.1109/TSMC.1973.4309314

Haralick RM. Statistical and structural approaches to texture. Proceedings of the IEEE. 1979;67(5):786-804. https://doi.org/10.1109/ PROC.1979.11328

Zong X. Sub-octave Wavelet Representation and Applications for Medical Image Processing [tese]. Gainesville: University of Florida; 1997. 139 p.

Rubin RH. The effect of density variations on elemental abundance ratios in gaseous nebulae. Astrophys J Suppl Series. 1989;69:897-910.

Kononenko I. Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell Med. 2001;23(1):89-109.

Seeram E, Seeram D. Image postprocessing in digital radiology — a primer for technologists. J Med Imaging Radiat Sci. 2008;39(1):23-41. https://doi. org/10.1016/j.jmir.2008.01.004

Giger ML, Chan H-P, Boone J. History and status of CAD and quantitative image analysis: the role of Medical Physics and AAPM. Med Phys. 2008;35(12):5799-820. https://doi.org/10.1118/1.3013555

Hologic Image Checker Analog CAD [Internet]. Hologic Inc.; 2012 [acessado em 10 ago. 2019]. Disponível em: http://www.alpha-imaging. com/products/computeraideddiagnosis/hologic.prod/

Nishikawa RM. Computer-aided Detection and Diagnosis. In: Brick U, Diekmann F. Digital Mammography. Medical Radiology: Diagnostic Imaging and Radiation Oncology. Alemanha: Springer; 2010. p. 85-106.

Sohns C, Angic BC, Sossalla S, Konietschke F, Obenauer S. CAD in full- field digital mammography-influence of reader experience and application of CAD on interpretation of time. Clin Imaging. 2010;34(6):418-24. https:// doi.org/10.1016/j.clinimag.2009.10.039

Fenton JJ, Taplin SH, Carney PA, Abraham L, Sickles EA, D’Orsi C, et al. Influence of computer-aided detection on performance of screening mammography. New Eng J Med. 2007;356(14):1399-409. https://doi. org/10.1056/NEJMoa066099

Malich AA, Fischer DR, Böttcher J. CAD for mammography: the technique, results, current role and further developments. Eur Radiol. 2006;16(7):1449-60. https://doi.org/10.1007/s00330-005-0089-x

Karssemeijer N. Computer aided detection in breast imaging: more than a perception aid. In: 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro; 2010. Rotterdam; 2010. https://doi. org/10.1109/ISBI.2010.5490360.

Chen Y, Gale GA, Evanoff M. Does routine breast screening practice over- ride display quality in reporting enriched test sets? In: Proceedings of SPIE Medical Imaging; 2013; Orlando. Orlando; 2013;8673:86730V-1-9.

Nishikawa RM.Mammographic databases. Breast Dis.1998;10(3-4):137-50.

Ganesan K, Acharya UR, Chua CK, Min LC, Abraham KT, Ng KH. Computer-aided breast cancer detection using mammograms: a review. IEEE Rev Biomed Eng. 2013;6:77-98. https://doi.org/10.1109/ RBME.2012.2232289

Schiabel H, Martinez AC, Vieira MAC, Escarpinati MC. Evaluating the influence of image acquisition system quality on a mammographic images processing scheme. In: Proceedings of SCAR Annual Meeting; 2005; Orlando. Orlando; 2005. p. 90-1.

Nishikawa RM, Yarusso LM. Variations in measured performance of CAD schemes due to database composition and scoring protocol. In: SPIE Medical Imaging. Proceedings. 1998;3338:840-4.

Schiabel H, Nunes FL, Escarpinati MC, Benatti RH. Investigations on the effect of different characteristics of images sets on the performance of a processing scheme for microcalcifications detection in digital mammograms. J Digital Imaging. 2001;14(2 Supl. 1):224-5. https://doi. org/10.1007/bf03190347

Góes RF, Schiabel H, Sousa MAZ. Automatic scanning software based on the characteristic curve of mammograms digitizers. J Electronic Imaging. 2013;22(1):013024-1-9. https://doi.org/10.1117/1.JEI.22.1.013024

Angelo MF, Patrocínio AC, Schiabel H, Medeiros RB, Pires SR. Comparison of changes in intensity of digital and digitized mammograms using intensity features analysis. IEEE Eng Med Biol. 2008;27(3):74-81.

Romualdo LS, Vieira MA, Schiabel H, Mascarenhas ND, Borges LR. Mammographic image denoising and enhancement using the Anscombe transformation, adaptive Wiener filtering and the Modulation Transfer Function. J Digital Imaging. 2013;26(2):183-97. https://doi.org/10.1007/ s10278-012-9507-1

Downloads

Publicado

2019-09-01

Como Citar

Marques da Silva, A. M., Patrocínio, A. C., & Schiabel, H. (2019). Processamento e Análise de Imagens Médicas. Revista Brasileira De Física Médica, 13(1), 34–48. https://doi.org/10.29384/rbfm.2019.v13.n1.p34-48

Edição

Seção

Artigo de Revisão

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 3 > >>