Prediction of Treatment Failure in Hodgkin Lymphoma: A Machine Learning Radiomic Approach in Baseline 18F-FDG PET/CT

Authors

  • Marcos Machado Radtec
  • Cleiton Queiroz
  • Jean Pita
  • Lucas Vieira
  • Bruno Santana
  • Mauro Namias
  • Vinicius Menezes
  • Marco Salvino
  • Simone Brandão
  • Eduardo Netto

DOI:

https://doi.org/10.29384/rbfm.2023.v17.19849001680

Keywords:

molecular imaging, machine learning, Hodgkin lymphoma, precision medicine

Abstract

Purpose: Hodgkin Lymphoma staging and prognostic evaluation through radiomic and machine learning (ML) methods has been little explored. This study explores radiomic features and proposes a new ML radiomic model to predict treatment failure in Hodgkin lymphoma patients from PET images. Methods: 13 radiomic features were extracted from PET images of 51 subjects with Hodgkin’s Lymphoma with response to therapy and 6 subjects with treatment failure as classified by the Lugano criteria for lymphoma response. Univariate analysis was performed for feature selection by means of the areas under ROC curves (AUC), and Pearson correlation was assessed to reduce redundancy in the feature space. A ML algorithm was developed and trained-validated with a six-fold stratified cross validation. The ML performance was assessed through the results of 15 combinations of two-fold validation samples, deriving two ML methods (M1 and M2) for tumor classification at the tumor and patient levels. Results: The features zone percentage (ZP), high intensity large area emphasis (HILAE), entropy and standardized uptake value of maximum pixel (SUVmax) were independent predictors of treatment failure. The ML algorithm performed with AUC=0.86 (M1) and AUC=0.96 (M2) to classify “individual tumors” and at “patient level” performed with sensitivity = 80.0% /specificity = 88.3% (M1) and sensitivity = 100% /specificity = 100% (M2). The ML outperformed the Ann Arbor staging that achieved, respectively, 83.3% and 31.7% for sensitivity and specificity. Conclusions: Evaluation of baseline 18F-FDG PET scans of individuals with Hodgkin’s lymphoma using a ML radiomic model enabled accurate classification of patients at higher risk of treatment failure.

Downloads

Download data is not yet available.

References

Kanoun S, Rossi C, Casasnovas O. [18F]FDG-PET/CT in hodgkin lymphoma: Current usefulness and perspectives. Cancers (Basel). 2018;10(5):1-11. doi:10.3390/cancers10050145

Mettler J. Metabolic Tumour Volume for Response Prediction in Advanced-Stage Hodgkin Lymphoma. J Med Imaging. 2018;i:1-25. doi:10.2967/jnumed.118.210047

Cottereau AS, Versari A, Loft A, et al. Prognostic value of baseline metabolic tumor volume in early-stage Hodgkin lymphoma in the standard arm of the H10 trial. Blood. 2018;131(13):1456-1463. doi:10.1182/blood-2017-07-795476

Guiot, Julien, et al. "A review in radiomics: Making personalized medicine a reality via routine imaging." Medicinal Research Reviews 42.1 (2022): 426-440.

Bouallègue FB, Tabaa YA, Kafrouni M, Cartron G, Vauchot F, Mariano-Goulart D. Association between textural and morphological tumor indices on baseline PET-CT and early metabolic response on interim PET-CT in bulky malignant lymphomas. Med Phys. 2017;44(9):4608-4619. doi:10.1002/mp.12349

Milgrom SA, Elhalawani H, Lee J, et al. A PET Radiomics Model to Predict Refractory Mediastinal Hodgkin Lymphoma. 2019;(December 2018):1-8. doi:10.1038/s41598-018-37197-z

Frood, R., Clark, M., Burton, C. et al. Utility of pretreatment FDG PET/CT–derived machine learning models for outcome prediction in classical Hodgkin lymphoma. Eur Radiol 32, 7237–7247 (2022). https://doi.org/10.1007/s00330-022-09039-0

Lartizien C, Rogez M, Niaf E, Ricard F. Computer-aided staging of lymphoma patients with FDG PET/CT imaging based on textural information. IEEE J Biomed Heal Informatics. 2014;18(3):946-955. doi:10.1109/JBHI.2013.2283658

Boellaard R, Delgado-bolton R, Oyen WJG, et al. FDG PET / CT: EANM procedure guidelines for tumour imaging: version 2. 0. 2015:328-354. doi:10.1007/s00259-014-2961-x

Menezes V, Machado M, Queiroz C, et al. How does Lean Six Sigma method improve healthcare practice in nuclear medicine departments? A successful case of dedicated software applications in oncological PET/CT. J Nucl Med. 2018;59(supplement 1):1013-1013. http://jnm.snmjournals.org/cgi/content/short/59/supplement_1/1013. Accessed April 16, 2019.

Menezes VO, Machado MAD, Queiroz CC, et al. Optimization of oncological 18 F-FDG PET/CT imaging based on a multiparameter analysis. Med Phys. 2016;43(2):930-938. doi:10.1118/1.4940354

Kanoun S, Tal I, Berriolo-riedinger A, Rossi C. Influence of Software Tool and Methodological Aspects of Total Metabolic Tumor Volume Calculation on Baseline [ 18F ] FDG PET to Predict Survival in Hodgkin Lymphoma. 2015;C:1-15. doi:10.1371/journal.pone.0140830

Griethuysen J, Fedorov A, Parmar C, Hosny A, Narayan V. Computational Radiomics System to Decode the Radiographic Phenotype. HHS Public Access. Cancer Res. 2018;77(21):1-8. doi:10.1158/0008-5472.CAN-17-0339.

Pfaehler E, Jong JR De, Boellaard R. Repeatability of 18 F-FDG PET radiomic features : A phantom study to explore sensitivity to image reconstruction settings, noise , and delineation method. 2018;0(0):1-14. doi:10.1002/mp.13322

Hatt M, Majdoub M, Vallieres M, et al. 18F-FDG PET Uptake Characterization Through Texture Analysis: Investigating the Complementary Nature of Heterogeneity and Functional Tumor Volume in a Multi-Cancer Site Patient Cohort. J Nucl Med. 2015;56(1):38-44. doi:10.2967/jnumed.114.144055

Galavis P, Hollensen C, Jallow N, Paliwal B, Jeraj R. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. NIH Public Access. Acta Oncol. 2010;49(7):1012-1016. doi:10.3109/0284186X.2010.498437

Zwanenburg A. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur J Nucl Med Mol Imaging. 2019. doi:10.1007/s00259-019-04391-8

Barrington SF, Mikhaeel NG, Kostakoglu L, et al. Role of imaging in the staging and response assessment of lymphoma: Consensus of the international conference on malignant lymphomas imaging working group. J Clin Oncol. 2014;32(27):3048-3058. doi:10.1200/JCO.2013.53.5229

Biggi A, Gallamini A, Chauvie S, et al. International Validation Study for Interim PET in ABVD-Treated, Advanced-Stage Hodgkin Lymphoma: Interpretation Criteria and Concordance Rate Among Reviewers. J Nucl Med. 2013;54(5):683-690. doi:10.2967/jnumed.112.110890

Pedregosa F, Weiss R, Brucher M. Scikit-learn : Machine Learning in Python. 2011;12:2825-2830.

Kundu S, Kers JG, Janssens ACJW. Constructing Hypothetical Risk Data from the Area under the ROC Curve : Modelling Distributions of Polygenic Risk. 2016:1-11. doi:10.1371/journal.pone.0152359

Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D. Characterization of PET/CT images using texture analysis: the past, the present… any future? Eur J Nucl Med Mol Imaging. 2017;44(1):151-165. doi:10.1007/s00259-016-3427-0

Vallieres M, Zwanenburg A, Badic B, Cheze-Le Rest C, Visvikis D, Hatt M. Responsible Radiomics Research for Faster Clinical Translation. J Nucl Med. 2017:jnumed.117.200501. doi:10.2967/jnumed.117.200501

Cook GJR, Yip C, Siddique M, et al. Are Pretreatment 18F-FDG PET Tumor Textural Features in Non-Small Cell Lung Cancer Associated with Response and Survival After Chemoradiotherapy? J Nucl Med. 2013;54(1):19-26. doi:10.2967/jnumed.112.107375

Tixier F, Le Rest CC, Hatt M, et al. Intratumor Heterogeneity Characterized by Textural Features on Baseline 18F-FDG PET Images Predicts Response to Concomitant Radiochemotherapy in Esophageal Cancer. J Nucl Med. 2011;52(3):369-378. doi:10.2967/jnumed.110.082404

Coroller TP, Agrawal V, Huynh E, et al. Radiomic-Based Pathological Response Prediction from Primary Tumors and Lymph Nodes in NSCLC. J Thorac Oncol. 2017;12(3):467-476. doi:10.1016/j.jtho.2016.11.2226

Machado, MAD, Pita, JLP., Netto, EM. (2021). PET Radiomic Features Variability: A Phantom Study on the Influence of Reconstruction and Discretization Method. Revista Brasileira De Física Médica, 15, 598. doi: https://doi.org/10.29384/rbfm.2021.v15.19849001598.

Orlhac F, Boughdad S, Philippe C, et al. A post-reconstruction harmonization method for multicenter radiomic studies in PET. J Nucl Med. 2018;2(Md):jnumed.117.199935. doi:10.2967/jnumed.117.199935

Sollini M, Cozzi L, Antunovic L, Chiti A, Kirienko M. PET Radiomics in NSCLC: State of the art and a proposal for harmonization of methodology. Sci Rep. 2017;7(1):1-15. doi:10.1038/s41598-017-00426-y

Published

2023-03-27

How to Cite

Machado, M., Queiroz, C. ., Pita, J., Vieira, L., Santana, B., Namias, M., Menezes, V., Salvino, M., Brandão, S., & Netto, E. (2023). Prediction of Treatment Failure in Hodgkin Lymphoma: A Machine Learning Radiomic Approach in Baseline 18F-FDG PET/CT. Brazilian Journal of Medical Physics, 17, 680. https://doi.org/10.29384/rbfm.2023.v17.19849001680

Issue

Section

Artigo Original

Most read articles by the same author(s)