Caracterização de sistemas de mamografia digital no domínio da frequência para diferentes condições de exposição

Autores

Palavras-chave:

digital detectors, response curve, noise evaluation, MTF, NNPS, DQE

Resumo

O forte avanço da mamografia digital no Brasil como ferramenta de rastreamento do câncer mamário requer que os novos sistemas digitais disponíveis sejam caracterizados. Os programas de garantia de qualidade de radiologia são projetados para garantir que certos níveis de qualidade de imagem sejam mantidos nos equipamentos de imagem. Medidas recentes introduzidas nos protocolos de mamografia digital indicam grandes variações nos parâmetros avaliados, apontando como principal fator os diversos detectores utilizados. Uma avaliação abrangente e quantitativa da resolução espacial de um sistema pode ser obtida a partir de sua função transferência de modulação (MTF). Medidas robustas de ruído podem ser feitas a partir do espectro de potência de ruído normalizado (NNPS) e eficiência quântica de detecção (DQE) como função da frequência espacial em vários níveis de exposição. O objetivo deste trabalho é caracterizar em termos de MTF, NNPS e DQE vários sistemas de mamografia, determinando suas características objetivas básicas de resolução e ruído em diferentes níveis de kerma no ar na superfície de entrada do detector (DAK). O detector CR Carestream EHR-M3, o sistema de biópsia Siemens Opdima, e os sistemas de mamografia digital de campo total Planmed Clarity, GE Essential, GE Pristina e GE Crystal Nova foram caracterizados. O desempenho básico dos sistemas testados foi avaliado em termos da função resposta, avaliação das componentes de ruído, MTF, NNPS e DQE usando protocolo de Diretrizes Europeias. As qualidades de feixe atenuadas (obtidas com filtração adicional de 2 mm Al) usadas foram 28 kVP com combinação anodo/filtro Mo/Mo para EHR-M3, Opdima, Essential e Pristina; 28 kVP com Mo/Rh para EHR-M3; 28 kVP com W/Rh para o sistema Crystal Nova; 28 kVP com W/Ag para o Clarity; e 34 kVP Rh/Ag para o Pristina. Como esperado, o detector CR apresentou uma resposta logarítmica e os sistemas DR apresentaram resposta linear (R² > 0.999). O sistema Pristina apresentou maiores coeficientes angular e linear para o feixe de Rh/Ag. A avaliação de ruído mostrou que o EHR-M3 é limitado quanticamente até 650 µGy (Mo/Mo) e 380 µGy (Mo/Rh), enquanto o Opdima até 290 µGy. Para valores de DAK mais altos, o ruído estrutural é a fonte de ruído dominante. Para o sistema Opdima, o ruído estrutural está relacionado à presença de inomogeneidades de baixa frequência nos dados, enquanto para detectores CR está relacionado ao tamanho dos grãos de fósforo. Os demais sistemas são quanticamente limitados no intervalo de DAK avaliado. Os sistemas avaliados apresentaram MTF razoavelmente isotrópica. MTF não apresentou dependência com a qualidade do feixe para os detectores EHR-M3 e Pristina. O sistema Clarity apresentou maiores valores de MTF, seguido pelos sistemas Opdima e Essential, Pristina, EHR-M3 e Crystal Nova. O NNPS aumentou com a diminuição do DAK. Para o sistema Pristina o NNPS diminuiu com o aumento da energia do feixe. O sistema Crystal Nova apresentou os menores valores de NNPS. A DQE aumentou, atingiu um máximo e depois decresceu com o aumento de DAK. O intervalo de DAK que maximiza a DQE foi dependente da composição do ruído de cada sistema. A DQE foi influenciada pela energia do feixe. O sistema Crystal Nova apresentou o melhor desempenho em termos de DQE para baixa frequência espacial. Os sistemas Opdima e Clarity exibiram maior DQE para frequências espaciais altas. A concordância com dados da literatura indica que os sistemas avaliados operam em condições típicas. Evidência de melhoria no desempenho dos detectores foi observada.

Downloads

Não há dados estatísticos.

Referências

Alikunju RP, Kearney S, Moss R, Khan A, Stamatis Y, Bullard E, Anaxagoras T, Brodrick J, Olivo A. Effect of different scintillator choices on the X-ray imaging performance of CMOS sensors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2023;1050:168136. https://doi.org/10.1016/j.nima.2023.168136.

ANVISA. Instrução Normativa nº 92, de 27 de maio de 2021. Diário Oficial da União, 31 maio 2021 [acesso em 25 agosto 2023]. Disponível em: https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2020/in092_27_05_2021.pdf.

Attix FH. Introduction to radiological physics and radiation dosimetry. Germany: Wiley-VCH; 2004.

Bloomquist AK, Mainprize JG, Mawdsley GE, Yaffe MJ. Method of measuring NEQ as a quality control metric for digital mammography. Med Phys. 2014;41(3):031905-1-11.

Borasi G, Nitrosi A, Ferrari P, Tassoni D. On site evaluation of three flat panel detectors for digital radiography. Med. Phys. 2003;30;1719–31.

Burgess A. On the noise variance of a digital mammography system. Med. Phys. 2004;31;1987–95.

Bushberg JT, Seibert JA, Leidholdt Jr EM, Boone JM. The essential physics of medical imaging. 3ª edição. Philadelphia: Lippincott Williams & Wilkins; 2012.

Carestream Health, Inc. Carestream Industrex. Technical Data/Non-Destructive Testing. New York; 2016.

Carton AK, Vandenbroucke D, Struye L, Maidment ADA, Kao YH, Albert M, Bosmans H, Marchal G. Validation of MTF measurement for digital mammography quality control. Med Phys. 2005;32(6):1684-1695.

Cunha DM, Tomal A, Poletti ME. Optimization of x-ray spectra in digital mammography through Monte Carlo simulations. Phys Med Biol. 2012;57(7):1919–1935.

Cunningham IA. Applied linear-systems theory. In: Van Metter RL, Beutel J, Kundel HL (org.). Handbook of medical imaging, Volume 1. Physics and physicophysics. Belligham: SPIE, 2000, cap. 2, p. 81-159.

Cunningham IA, Shaw R. Signal-to-noise optimization of medical imaging systems. J Opt Soc Am A. 1999;16(3):621-632.

Day JA, Tanguay J. The detective quantum efficiency of cadmium telluride photon-counting x-ray detectors in breast imaging applications. Med Phys. 2021;49(3):1481-1494. https://doi.org/10.1002/mp.15411

Dobbins JT 3rd, Samei E, Ranger NT, Chen Y. Intercomparison of methods for image quality characterization. II. Noise power spectrum. Med Phys. 2006;33(5):1466-1475. Donini B, Rivetti S, Lanconelli N, Bertolini M. Free software for performing physical analysis of systems for digital radiography and mammography. Med Phys. 2014;41(5):051903.

EUREF. European Commission. European guidelines for quality assurance in breast cancer screening and diagnosis. 4th ed. Luxembourg: European Commission; 2006.

Evans DS, Workman A, Payne M. A comparison of the imaging properties of CCD-based devices used for small field digital mammography. Phys Med Biol. 2002;47:117–135. Feng K, Wang Z, Yang Y. Development of medical imaging sensors. International Journal of Distributed Sensor Networks. 2020;16(1). doi: 10.1177/1550147720903607

Fetterly KA, Schueler BA. Performance evaluation of a “dual‐side read” dedicated mammography computed radiography system. Med Phys. 2003;30(7):1843-1854. Frederico Alvarez MJ, Banguero Y. Caracterización del detector de un sistema de mamografía digital en modos de adquisición 2D y 3D. Revista Brasileira de Física Médica. 2023;17:609. doi: 10.29384/rbfm.2023.v17.19849001609.

Ghetti C, Borrini A, Ortenzia O, Rossi R, Ordóñez PL. Physical characteristics of GE Senographe Essential and DS digital mammography detectors. Med Phys. (2008);35(2):456-463.

Hillen W, Schiebel U, Zaengel T. Imaging performance of a digital storage phosphor system. Med. Phys. 1987;14:744–751.

IAEA. International Atomic Energy Agency. Dosimetry in Diagnostic Radiology: An International Code of Practice. Technical Reports Series No. 457. Vienna: IAEA; 2007.

ICRU. International Commission on Radiation Units and Measurements. ICRU Report 54. Medical Imaging – The Assessment of Image Quality. Maryland; 1996.

ICRU. International Commission on Radiation Units and Measurements. ICRU Report 82. Mammography – Assessment of Image Quality. Maryland; 2009.

IEC. International Electrotechnical Commission. Medical electrical equipment – Characteristics of digital x-ray imaging devices – Part 1-2: Determination of the detective quantum efficiency – detectors used in mammography. Geneva: IEC-62220–1; 2007.

IEC. International Electrotechnical Commission. Medical electrical equipment – Characteristics of digital x-ray imaging devices – Part 1: Determination of the detective quantum efficiency. Geneva: IEC-62220–1; 2015.

INCA. Instituto Nacional de Câncer (2022). Estimativa 2023: incidência de câncer no Brasil [Internet]. Rio de Janeiro: INCA [citado 18 abril 2023]. Disponível em: https://www.inca.gov.br/sites/ufu.sti.inca.local/files//media/document//estimativa-2023.pdf.

Johns HE, Cunningham JR. The Physics of Radiology. 4th ed. Springfield: Charles C. Thomas; 1983.

Karellas A, Vedantham S. Detectors for digital mammography. In G. Whitman & T. Haygood (Eds.), Digital Mammography: A Practical Approach (pp. 1-17). Cambridge: Cambridge University Press, 2012. doi:10.1017/CBO9781139049337.002

Kim HK, Cunningham IA, Yin Z, Cho G. On the development of digital radiography detectors: a review. Intern J Prec Eng & Man. 2008;9(4):86-100.

Kulama E, Burch A, Castellano I, Lawinski CP, Marshall N, Young KC. Commissioning and routine testing of full field digital mammography systems (NHSBSP Equipment Report 0604, Version 3). Sheffield: NHS Cancer Screening Programmes, 2009.

Mackenzie A, Honey ID. Characterization of noise sources for two generations of computed radiography systems using powder and crystalline photostimulable phosphors. Med Phys. 2007;34 (8):3345-57.

Mackenzie A, Khan R, Young KC. Historical trends in image quality and mean glandular dose in digital mammography. Proc. SPIE IWBI2020. 2020, 11513, 115131G. https://doi.org/10.1117/12.2550568

Makeev A, Ikejimba LC, Salad J, Glick SJ. Objective assessment of task performance: a comparison of two FFDM detectors using an anthropomorphic breast phantom. Journal of Medical Imaging 2019;6(4): 043503.

Marshall NW. Early experience in the use of quantitative image quality measurements for the quality assurance of full field digital mammography x-ray systems. Phys Med Biol. 2007;52(18):5545.

Marshall NW. Detective quantum efficiency measured as a function of energy for two full-field digital mammography systems. Phys Med Biol. 2009;54(9):2845.

Marshall NW, Monnin P, Bosmans H, Bochud FO, Verdun FR. Image quality assessment in digital mammography: part I. Technical characterization of systems. Phys Med Biol. 2011;56:4201-4220.

Marshall NW, Lemmens K, Bosmans H. Physical evaluation of needle photostimulable phosphor based CR mammography system. Med Phys. 2012;39(2):811-823.

Marshall NW, van Ongeval C, Bosmans H. Performance evaluation of a retrofit digital detector-based mammography system. Phys. Med. 2016;32:312–322.

Marshall NW, Smet M, Hofmans M, Pauwels H, De Clercq T, Bosmans H. Technical characterization of five x-ray detectors for paediatric radiography applications. Phys Med Biol. 2017;62(24):N573.

Michail C, Valais I, Seferis I, Kalyvas N, Fountos G, Kandarakis I. Experimental measurement of a high resolution CMOS detector coupled to CsI scintillators under X-ray radiation. Radiation Measurements. 2015;74:39-46.

Monnin P, Verdun FR. Qualification of digital mammography imaging systems Kodak CR 975 – EHR-M2 & EHR-M3. Lausanne: Institut Universitaire de Radiophysique Appliquée, 2009

Monnin P, Bosmans H, Verdun FR, Marshall NW. Comparison of the polynomial model against explicit measurements of noise components for different mammography systems. Phys. Med. Biol. 2014;59;5741. doi:10.1088/0031-9155/59/19/5741

Monnin P, Bosmans H, Verdun FR, Marshall NW. A comprehensive model for quantum noise characterization in digital mammography. Phys. Med. Biol. 2016;61;2083. doi:10.1088/0031-9155/61/5/2083

NHS. NHS Breast Screening Programme equipment report. Technical Evaluation of Siemens Revelation digital mammography system in 2D mode. London: Public Health England, 2019a

NHS. NHS Breast Screening Programme equipment report. Technical Evaluation of Hologic 3Dimensions digital mammography system in 2D mode. London: Public Health England, 2019b

NHS. NHS Breast Screening Programme equipment report. Technical Evaluation of IMS Giotto Class digital mammography system in 2D mode. London: Public Health England, 2019c

NHS. NHS Breast Screening Programme. Technical evaluation of GE Senographe Pristina digital mammography system in 2D mode. 2019d.

NHS. NHS Breast Screening Programme equipment report. Technical evaluation of Planmed Clarity digital mammography system in 2D mode. London: Public Health England, 2019e

Ou X, Chen X, Xu X, Xie L, Chen X, Hong Z, Bai H, Liu X, Chen Q, Li L, Yang H. Recent development in X-ray imaging technology: future and challenges. Res. 2021;2021:1–18.

Porzio M, Konstantinidis A. Mammo_QC: Free software for quality control (QC) analysis in digital mammography and digital breast tomosynthesis compliant with the European guidelines and EUREF/EFOMP protocols. Biomedical Physics & Engineering Express. 2021;7(6). Ranger NT, Samei E, Dobbins JT 3rd, Ravin CE. Assessment of detective quantum efficiency: intercomparison of a recently introduced international standard with prior methods. Radiology. 2007;243(3):785-95. doi: 10.1148/radiol.2433060485.

Rimkus D, Baily NA. Quantum noise in detectors. Med. Phys. 1983;10;470–1.

Rivetti S, Lanconelli N, Bertolini M, Nitrosi A, Burani A, Acchiappati D. Comparison of different computed radiography systems: physical characterization and contrast detail analysis. Med. Phys. 2010;37(2);440–448. https:// doi.org/10.1118/1.3284539.

Rowlands JA. The physics of computed radiography. Phys Med Biol. 2002;47:R123–R166.

Samei E, Flynn MJ, Reimann DA. A method for measuring the presampled MTF of digital radiographic systems using an edge test device. Med Phys. 1998;25(1):102-113.

Samei E, Buhr E, Granfors P, Vandenbroucke D, Wang X. Comparison of edge analysis techniques for the determination of the MTF of digital radiographic systems. Phys. Med. Biol. 2005;50;3613. doi:10.1088/0031-9155/50/15/009

Samei E, Ranger NT, Dobbins JT 3rd, Chen Y. Intercomparison of methods for image quality characterization. I. Modulation transfer function. Med Phys. 2006;33(5):1454-1465.

Samei E, Ikejimba LC, Harrawood BP, Rong J, Cunningham IA, Flynn MJ. Report of AAPM Task Group 162: software for planar image quality metrology. Med. Phys. 2018;45(2):e32–e39. Schneider C, Rasband W, Eliceiri K. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–675. https://doi.org/10.1038/nmeth.2089

Seco J, Clasie B, Partridge M. Review on the characteristics of radiation detectors for dosimetry and imaging. Phys. Med. Biol. 2014;59:R303–R347.

Secretaria de atenção à Saúde. Cadastro Nacional dos Estabelecimentos de Saúde: consulta de equipamentos [citado 18 abril 2023]. Disponível em: http://cnes2.datasus.gov.br/Mod_Ind_Equipamento.asp?VEstado=00.

Seibert JA, Bogucki T, Ciona T, Huda W, Karellas A, Mercier J, Samei E, Shepard JS, Stewart B, Strauss K, Suleiman O, Tucker D, Uzenoff R, Weiser J, Willis C. AAPM Report #93: Quality Control and Acceptance Testing of Photostimulable Storage Phosphor Imaging Systems. College Park: American Association of Physicists in Medicine; 2006. Seifert E. Origin Pro 9.1: Scientific Data Analysis and Graphing Software-Software Review. J. Chem. Inf. Model. 2014;54(5):1552. https://doi.org/10.1021/ci500161d

Siewerdsen JH, Antonuk LE, el-Mohri Y, Yorkston J, Huang W, Boudry JM, Cunningham IA. Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology. Med. Phys. 1997;24;71–89. Siewerdsen J. Optimization of 2D and 3D Radiographic Imaging Systems. In E. Samei & E. Krupinski (Eds.), The Handbook of Medical Image Perception and Techniques (pp. 417-439). Cambridge: Cambridge University Press, 2018. doi:10.1017/9781108163781.028 Tanaka N, Morishita, J. Computed Radiography. Handbook of X-ray Imaging: Physics and Technology. 2017 pp. 219-238

Thunberg SJ, Sklebitz H, Ekdahl B, Baetz L, Lundin A, Moeller H, Fleischmann F, Kreider G, Weidner T. OPDIMA: large-area CCD-based x-ray image sensor for spot imaging and biopsy control in mammography. Medical Imaging 1999: Physics of Medical Imaging; 3659: 150-158. doi 10.1117/12.349488.

Traino AC, Barca P, Lamastra R, Tucciariello RM, Sottocornola C, Marini C, Aringhieri G, Caramella D, Fantacci ME. Average absorbed breast dose (2ABD): an easy radiation dose index

for digital breast tomosynthesis. European Radiology Experimental. 2020;4:38. https://doi.org/10.1186/s41747-020-00165-2

van Engen RE, Bosmans H, Dance D, Heid P, Lazzari B, Marshall N, Schopphoven S, Thijssen M, Young K. Digital mammography update update. European protocol for the quality control of the physical and technical aspects of mammography screening. S1, part 1: acceptance and constancy testing. In: Perry N, Broeders M, de Wolf C, Tornberg S, Holland R, von Karsa L, editors. European guidelines for quality assurance in breast cancer screening and diagnosis. 4th ed, Supplements. Luxembourg: European Commission, Office for Official Publications of the European Union; 2013a. p. 1–54.

Wigati KT, Marshall NW, Lemmens K, Binst J, Jacobs A, Cockmartin L, Zhang G, Vancoillie L, Petrov D, Vandenbroucke DAN, Soejoko DS, Bosmans H. On the relevance of modulation transfer function measurements in digital mammography quality control. Journal of Medical Imaging 2021;8(2):023505.

Williams MB, Krupinski EA, Strauss KJ, Breeden WK 3rd, Rzeszotarski MS, Applegate K, Wyatt M, Bjork S, Seibert JA. Digital radiography image quality: image acquisition. J Am Coo Radiol 2007;4(6):371-388.

Yaffe MJ. Detectors for digital mammography. In: Bick, U., Diekmann, F. (Eds.), Digital Mammography. Springer, pp. 13–31; 2010. Yaffe MJ, Bloomquist AK, Hunter DM, Mawdsley GE, Chiarelli AM, Muradali D, Mainprize JG. Comparative performance of modern digital mammography systems in a large breast screening program. Medical physics. 2013, 40(12), 121915. https://doi.org/10.1118/1.482951

Downloads

Publicado

2024-06-18

Como Citar

Maia Marques Martinez Perez, A., & Poletti, M. E. (2024). Caracterização de sistemas de mamografia digital no domínio da frequência para diferentes condições de exposição. Revista Brasileira De Física Médica, 18, 785. Recuperado de https://rbfm.emnuvens.com.br/rbfm/article/view/785

Edição

Seção

Resenha de Tese ou Dissertação

Artigos mais lidos pelo mesmo(s) autor(es)