A Study of the response function and radiographic techniques and processing influence on digital radiology image quality

Authors

  • Breno de Oliveira Feitosa Universidade de São Paulo
  • Amanda Fernandes Nascimento Faculdade de Medicina da Universidade de São Paulo
  • Denise Yanikian Nersissian Instituto de Física da Universidade de São Paulo

DOI:

https://doi.org/10.29384/rbfm.2024.v18.19849001781

Keywords:

digital radiology, image quality, response function

Abstract

The implementation of a quality assurance program for radiography equipment is crucial not only to ensure image quality but also for the radiological protection of patients and involved professionals. This study focus on evaluation of image quality parameters and investigate the response function of digital detectors at the Instituto de Radiologia do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InRad/HCFMUSP), using the method described in document n°39 IAEA. The analysis of the response functions of the studied radiation detectors showed distinct behaviors, influencing the resulting signal value. Voltage, distance, and focus were the parameters that most influenced image quality metrics, resulting in a maximum coefficient of variation of 14.2% for contrast (SDNR) and 12.2% for signal-to-noise ratio (SNR). It was found that processing types influence image quality parameters as well as the Exposure Index (EI), with a maximum variation of 87%. It was possible to conclude that the simulator object used is suitable for obtaining the response function of digital detectors and that image quality metrics depend on technical, geometric, and processing configurations.

Downloads

Download data is not yet available.

References

International Atomic Energy Agency. Implementation of a remote and automated quality control programme for radiography and mammography equipment, IAEA human health series, ISSN 2075–3772 ; no. 39; 2021.

World Health Organization. Quality Assurance in Diagnostic Radiology. Geneva: WHO; 1982.

Lança L, Silva A. Digital radiography detectors e A technical overview: Part 1. Elsevier. 2008; 15(1):58-62.

Yoshimura EM, Okuno E. Física das radiações. Brazil: Editora Oficina de Textos; 2010.

Bushberg JT, Seibert JA, et al. The essential physics of medical imaging. Philadelphia: Lippincott Williams & Wilkins; 2012.

Bourne R. Fundamentals of Digital Imaging in Medicine. New York, Springer, 2010.

Francisco MF. Método da avaliação de resolução espacial em sistemas digitais de mamografia através do uso da MTF. Revista Brasileira de Física Médica. 2018;12(3):26-29.

Braga LF, Pimentel RB, et al. Metodologia de análise e interpretação dos indicadores de exposição (EI) e seus desvios (DI) em radiologia computadorizada. Revista Brasileira de Física Médica. 2019; 13(3):33-37.

Shepard SJ, Wang J. An exposure indicator for digital radiography: AAPM Task Group 116 (Executive Summary). Medical Physics. 2009; 36(7):2898-2914.

International Atomic Energy Agency. ATIA. v20210903, IAEA, 2021. Available from: https://humanhealth.iaea.org/HHW/MedicalPhysics/DiagnosticRadiology/PerformanceTesting/AutomatedQAinRadiology/index.html .

National Institutes of Health. ImageJ. v1.53f, NIH, 2022. Available from: https://imagej.nih.gov/ij/.

Published

2024-09-03

How to Cite

de Oliveira Feitosa, B., Fernandes Nascimento, A., & Yanikian Nersissian, D. (2024). A Study of the response function and radiographic techniques and processing influence on digital radiology image quality. Brazilian Journal of Medical Physics, 18, 781. https://doi.org/10.29384/rbfm.2024.v18.19849001781

Issue

Section

Comunicação Técnica